Last updated just now...
The development of artificial intelligence can be viewed as an evolution of data-driven learning paradigms, with successive shifts in data organization and utilization continuously driving advances in model capability. Current LLM research is dominated by a paradigm that relies heavily on unidirectional scaling of data size, increasingly encountering bottlenecks in data availability, acquisition cost, and training efficiency. In this work, we argue that the development of AGI is entering a new p...
Large Language Models (LLMs) have shown promise in solving complex mathematical problems, yet they still fall short of producing accurate and consistent solutions. Reinforcement Learning (RL) is a framework for aligning these models with task-specific rewards, improving overall quality and reliability. Group Relative Policy Optimization (GRPO) is an efficient, value-function-free alternative to Proximal Policy Optimization (PPO) that leverages group-relative reward normalization. We introduce It...
We introduce InternAgent-1.5, a unified system designed for end-to-end scientific discovery across computational and empirical domains. The system is built on a structured architecture composed of three coordinated subsystems for generation, verification, and evolution. These subsystems are supported by foundational capabilities for deep research, solution optimization, and long horizon memory. The architecture allows InternAgent-1.5 to operate continuously across extended discovery cycles while...
Recent works have indicated redundancy across transformer blocks, prompting the research of depth compression to prune less crucial blocks. However, current ways of entire-block pruning suffer from risks of discarding meaningful cues learned in those blocks, leading to substantial performance degradation. As another line of model compression, channel pruning can better preserve performance, while it cannot reduce model depth and is challenged by inconsistent pruning ratios for individual layers....
Reward models (RMs) are crucial for the training of large language models (LLMs), yet they typically rely on large-scale human-annotated preference pairs. With the widespread deployment of LLMs, in-the-wild interactions have emerged as a rich source of implicit reward signals. This raises the question: Can we develop reward models directly from in-the-wild interactions? In this work, we explore this possibility by adopting WildChat as an interaction source and proposing a pipeline to extract rel...
Composed image retrieval (CIR) requires complex reasoning over heterogeneous visual and textual constraints. Existing approaches largely fall into two paradigms: unified embedding retrieval, which suffers from single-model myopia, and heuristic agentic retrieval, which is limited by suboptimal, trial-and-error orchestration. To this end, we propose OSCAR, an optimization-steered agentic planning framework for composed image retrieval. We are the first to reformulate agentic CIR from a heuristic ...
Open-ended dialogue agents aim to deliver engaging, personalized interactions by adapting to users' traits, but existing methods face critical limitations: over-reliance on pre-collected user data, and short-horizon biases in reinforcement learning (RL) that neglect long-term dialogue value. To address these, we propose a novel long-horizon RL framework integrating online personalization with Adaptive Tree-based Group Relative Policy Optimization (AT-GRPO). Adopting a two-agent game paradigm, a ...
Memory mechanism is a core component of LLM-based agents, enabling reasoning and knowledge discovery over long-horizon contexts. Existing agent memory systems are typically designed within isolated paradigms (e.g., explicit, parametric, or latent memory) with tightly coupled retrieval methods that hinder cross-paradigm generalization and fusion. In this work, we take a first step toward unifying heterogeneous memory paradigms within a single memory system. We propose MemAdapter, a memory retriev...
Parallel thinking has emerged as a new paradigm for large reasoning models (LRMs) in tackling complex problems. Recent methods leverage Reinforcement Learning (RL) to enhance parallel thinking, aiming to address the limitations in computational resources and effectiveness encountered with supervised fine-tuning. However, most existing studies primarily focus on optimizing the aggregation phase, with limited attention to the path exploration stage. In this paper, we theoretically analyze the opti...
Integrating Large Language Models (LLMs) with external tools via multi-agent systems offers a promising new paradigm for decomposing and solving complex problems. However, training these systems remains notoriously difficult due to the credit assignment challenge, as it is often unclear which specific functional agent is responsible for the success or failure of decision trajectories. Existing methods typically rely on sparse or globally broadcast rewards, failing to capture individual contribut...
Reasoning with a chain-of-thought (CoT) enables Large Language Models (LLMs) to solve complex tasks but incurs significant inference costs due to the generation of long rationales. We propose Thinking States, a method that performs reasoning {\em while} the input is processing. Specifically, Thinking States generates sequences of thinking tokens every few input tokens, transforms the thoughts back into embedding space, and adds them to the following input tokens. This has two key advantages. Fir...
A core bottleneck in large language model (LLM) inference is the cost of attending over the ever-growing key-value (KV) cache. Although near-oracle top-k KV selection can preserve the quality of dense attention while sharply reducing computation and bandwidth, existing sparse methods generally rely on posterior heuristics, i.e., selectors conditioned on observed attention or proxy scores. Such conditioning introduces posterior bias: it tends to distort true token importance and miss salient toke...
Although computer-use agents (CUAs) hold significant potential to automate increasingly complex OS workflows, they can demonstrate unsafe unintended behaviors that deviate from expected outcomes even under benign input contexts. However, exploration of this risk remains largely anecdotal, lacking concrete characterization and automated methods to proactively surface long-tail unintended behaviors under realistic CUA scenarios. To fill this gap, we introduce the first conceptual and methodologica...
While existing Singing Voice Synthesis systems achieve high-fidelity solo performances, they are constrained by global timbre control, failing to address dynamic multi-singer arrangement and vocal texture within a single song. To address this, we propose Tutti, a unified framework designed for structured multi-singer generation. Specifically, we introduce a Structure-Aware Singer Prompt to enable flexible singer scheduling evolving with musical structure, and propose Complementary Texture Learni...
Although Video Large Language Models (VLLMs) have shown remarkable capabilities in video understanding, they are required to process high volumes of visual tokens, causing significant computational inefficiency. Existing VLLMs acceleration frameworks usually compress spatial and temporal redundancy independently, which overlooks the spatiotemporal relationships, thereby leading to suboptimal spatiotemporal compression. The highly correlated visual features are likely to change in spatial positio...
Multi-agent architectures built on large language models (LLMs) have demonstrated the potential to realize swarm intelligence through well-crafted collaboration. However, the substantial burden of manual orchestration inherently raises an imperative to automate the design of agentic workflows. We frame such an agent coordination challenge as a classic problem in dynamic ad-hoc networking: How to establish adaptive and reliable communication among a scalable number of agentic hosts? In response t...
Partial Differential Equations are precise in modelling the physical, biological and graphical phenomena. However, the numerical methods suffer from the curse of dimensionality, high computation costs and domain-specific discretization. We aim to explore pros and cons of different PDE solvers, and apply them to specific scientific simulation problems, including forwarding solution, inverse problems and equations discovery. In particular, we extend the recent CNF (NeurIPS 2023) framework solver t...
The prevalent paradigm in robot learning attempts to generalize across environments, embodiments, and tasks with language prompts at runtime. A fundamental tension limits this approach: language is often too abstract to guide the concrete physical understanding required for robust manipulation. In this work, we introduce Contact-Anchored Policies (CAP), which replace language conditioning with points of physical contact in space. Simultaneously, we structure CAP as a library of modular utility m...
We investigate what structure emerges in 3D Gaussian Splatting (3DGS) solutions from standard multi-view optimization. We term these Rendering-Optimal References (RORs) and analyze their statistical properties, revealing stable patterns: mixture-structured scales and bimodal radiance across diverse scenes. To understand what determines these parameters, we apply learnability probes by training predictors to reconstruct RORs from point clouds without rendering supervision. Our analysis uncovers f...
Chain-of-Thought (CoT) reasoning successfully enhances the reasoning capabilities of Large Language Models (LLMs), yet it incurs substantial computational overhead for inference. Existing CoT compression methods often suffer from a critical loss of logical fidelity at high compression ratios, resulting in significant performance degradation. To achieve high-fidelity, fast reasoning, we propose a novel EXTreme-RAtio Chain-of-Thought Compression framework, termed Extra-CoT, which aggressively redu...
Large Language Model (LLM) agents have shown stunning results in complex tasks, yet they often operate in isolation, failing to learn from past experiences. Existing memory-based methods primarily store raw trajectories, which are often redundant and noise-heavy. This prevents agents from extracting high-level, reusable behavioral patterns that are essential for generalization. In this paper, we propose SkillRL, a framework that bridges the gap between raw experience and policy improvement throu...
In real-world streaming recommender systems, user preferences evolve dynamically over time. Existing bandit-based methods treat time merely as a timestamp, neglecting its explicit relationship with user preferences and leading to suboptimal performance. Moreover, online learning methods often suffer from inefficient exploration-exploitation during the early online phase. To address these issues, we propose HyperBandit+, a novel contextual bandit policy that integrates a time-aware hypernetwork t...
*Notable papers are those with at least two authors from a "big" AI/ML lab.