Last updated just now...
Artificial intelligence can rapidly propose candidate phases and structures from X-ray diffraction (XRD), but these hypotheses often fail in downstream refinement because peak intensities cannot be stably assigned under severe overlap and diffraction consistency is enforced only weakly. Here we introduce WPEM, a physics-constrained whole-pattern decomposition and refinement workflow that turns Bragg's law into an explicit constraint within a batch expectation--maximization framework. WPEM models...
Achieving cooperation among self-interested agents remains a fundamental challenge in multi-agent reinforcement learning. Recent work showed that mutual cooperation can be induced between "learning-aware" agents that account for and shape the learning dynamics of their co-players. However, existing approaches typically rely on hardcoded, often inconsistent, assumptions about co-player learning rules or enforce a strict separation between "naive learners" updating on fast timescales and "meta-lea...
Neural operators offer an effective framework for learning solutions of partial differential equations for many physical systems in a resolution-invariant and data-driven manner. Existing neural operators, however, often suffer from instability in multi-layer iteration and long-horizon rollout, which stems from the unconstrained Euclidean latent space updates that violate the geometric and conservation laws. To address this challenge, we propose to constrain manifolds with low-rank Lie algebra p...
Approximate nearest neighbor (ANN) search is widely used in the retrieval stage of large-scale recommendation systems. In this stage, candidate items are indexed using their learned embedding vectors, and ANN search is executed for each user (or item) query to retrieve a set of relevant items. However, ANN-based retrieval has two key limitations. First, item embeddings and their indices are typically learned in separate stages: indexing is often performed offline after embeddings are trained, wh...
Computed Tomography (CT) is one of the most widely used and diagnostically information-dense imaging modalities, covering critical organs such as the heart, lungs, liver, and colon. Clinical interpretation relies on both slice-driven local features (e.g., sub-centimeter nodules, lesion boundaries) and volume-driven spatial representations (e.g., tumor infiltration, inter-organ anatomical relations). However, existing Large Vision-Language Models (LVLMs) remain fragmented in CT slice versus volum...
Adapting one's thought process based on corrective feedback is an essential ability in human learning, particularly in collaborative settings. In contrast, the current large language model training paradigm relies heavily on modeling vast, static corpora. While effective for knowledge acquisition, it overlooks the interactive feedback loops essential for models to adapt dynamically to their context. In this work, we propose a framework that treats this interactive in-context learning ability not...
The rapid rise of large language models (LLMs) is reshaping the landscape of automatic assessment in education. While these systems demonstrate substantial advantages in adaptability to diverse question types and flexibility in output formats, they also introduce new challenges related to output uncertainty, stemming from the inherently probabilistic nature of LLMs. Output uncertainty is an inescapable challenge in automatic assessment, as assessment results often play a critical role in informi...
While recent advances in humanoid locomotion have achieved stable walking on varied terrains, capturing the agility and adaptivity of highly dynamic human motions remains an open challenge. In particular, agile parkour in complex environments demands not only low-level robustness, but also human-like motion expressiveness, long-horizon skill composition, and perception-driven decision-making. In this paper, we present Perceptive Humanoid Parkour (PHP), a modular framework that enables humanoid r...
Humanoid motion control has witnessed significant breakthroughs in recent years, with deep reinforcement learning (RL) emerging as a primary catalyst for achieving complex, human-like behaviors. However, the high dimensionality and intricate dynamics of humanoid robots make manual motion design impractical, leading to a heavy reliance on expensive motion capture (MoCap) data. These datasets are not only costly to acquire but also frequently lack the necessary geometric context of the surrounding...
Visual analogy learning enables image manipulation through demonstration rather than textual description, allowing users to specify complex transformations difficult to articulate in words. Given a triplet $\{\mathbf{a}$, $\mathbf{a}'$, $\mathbf{b}\}$, the goal is to generate $\mathbf{b}'$ such that $\mathbf{a} : \mathbf{a}' :: \mathbf{b} : \mathbf{b}'$. Recent methods adapt text-to-image models to this task using a single Low-Rank Adaptation (LoRA) module, but they face a fundamental limitation...
Current methods for personality control in Large Language Models rely on static prompting or expensive fine-tuning, failing to capture the dynamic and compositional nature of human traits. We introduce PERSONA, a training-free framework that achieves fine-tuning level performance through direct manipulation of personality vectors in activation space. Our key insight is that personality traits appear as extractable, approximately orthogonal directions in the model's representation space that supp...
Reinforcement Learning (RL) has significantly improved large language model reasoning, but existing RL fine-tuning methods rely heavily on heuristic techniques such as entropy regularization and reweighting to maintain stability. In practice, they often suffer from late-stage performance collapse, leading to degraded reasoning quality and unstable training. Our analysis shows that the magnitude of token-wise policy gradients in RL is negatively correlated with token probability and local policy ...
Recent studies have explored the combination of multiple LoRAs to simultaneously generate user-specified subjects and styles. However, most existing approaches fuse LoRA weights using static statistical heuristics that deviate from LoRA's original purpose of learning adaptive feature adjustments and ignore the randomness of sampled inputs. To address this, we propose a dynamic training-free fusion framework that operates throughout the generation process. During the forward pass, at each LoRA-ap...
Reinforcement learning (RL) has achieved notable performance in high-dimensional sequential decision-making tasks, yet remains limited by low sample efficiency, sensitivity to noise, and weak generalization under partial observability. Most existing approaches address these issues primarily through optimization strategies, while the role of architectural priors in shaping representation learning and decision dynamics is less explored. Inspired by structural principles of the cerebellum, we propo...
Training large language models (LLMs) relies almost exclusively on dense adaptive optimizers with increasingly sophisticated preconditioners. We challenge this by showing that randomly masking parameter updates can be highly effective, with a masked variant of RMSProp consistently outperforming recent state-of-the-art optimizers. Our analysis reveals that the random masking induces a curvature-dependent geometric regularization that smooths the optimization trajectory. Motivated by this finding,...
Misclassifications in spam and phishing detection are very harmful, as false negatives expose users to attacks while false positives degrade trust. Existing uncertainty-based detectors can flag potential errors, but possibly be deceived and offer limited interpretability. This paper presents X-MAP, an eXplainable Misclassification Analysis and Profilling framework that reveals topic-level semantic patterns behind model failures. X-MAP combines SHAP-based feature attributions with non-negative ma...
Matched molecular pairs (MMPs) capture the local chemical edits that medicinal chemists routinely use to design analogs, but existing ML approaches either operate at the whole-molecule level with limited edit controllability or learn MMP-style edits from restricted settings and small models. We propose a variable-to-variable formulation of analog generation and train a foundation model on large-scale MMP transformations (MMPTs) to generate diverse variables conditioned on an input variable. To e...
Learning latent actions from action-free video has emerged as a powerful paradigm for scaling up controllable world model learning. Latent actions provide a natural interface for users to iteratively generate and manipulate videos. However, most existing approaches rely on monolithic inverse and forward dynamics models that learn a single latent action to control the entire scene, and therefore struggle in complex environments where multiple entities act simultaneously. This paper introduces Fac...
Time series data are prone to noise in various domains, and training samples may contain low-predictability patterns that deviate from the normal data distribution, leading to training instability or convergence to poor local minima. Therefore, mitigating the adverse effects of low-predictability samples is crucial for time series analysis tasks such as time series forecasting (TSF) and time series classification (TSC). While many deep learning models have achieved promising performance, few con...
Modeling multiscale patterns is crucial for long-term time series forecasting (TSF). However, redundancy and noise in time series, together with semantic gaps between non-adjacent scales, make the efficient alignment and integration of multi-scale temporal dependencies challenging. To address this, we propose SEMixer, a lightweight multiscale model designed for long-term TSF. SEMixer features two key components: a Random Attention Mechanism (RAM) and a Multiscale Progressive Mixing Chain (MPMC)....
The response of the climate system to increased greenhouse gases and other radiative perturbations is governed by a combination of fast and slow feedbacks. Slow feedbacks are typically activated in response to changes in ocean temperatures on decadal timescales and manifest as changes in climatic state with no recent historical analogue. However, fast feedbacks are activated in response to rapid atmospheric physical processes on weekly timescales, and they are already operative in the present-da...
The superficial alignment hypothesis (SAH) posits that large language models learn most of their knowledge during pre-training, and that post-training merely surfaces this knowledge. The SAH, however, lacks a precise definition, which has led to (i) different and seemingly orthogonal arguments supporting it, and (ii) important critiques to it. We propose a new metric called task complexity: the length of the shortest program that achieves a target performance on a task. In this framework, the SA...
Learning generalist policies capable of accomplishing a plethora of everyday tasks remains an open challenge in dexterous manipulation. In particular, collecting large-scale manipulation data via real-world teleoperation is expensive and difficult to scale. While learning in simulation provides a feasible alternative, designing multiple task-specific environments and rewards for training is similarly challenging. We propose Dex4D, a framework that instead leverages simulation for learning task-a...
We present GLM-5, a next-generation foundation model designed to transition the paradigm of vibe coding to agentic engineering. Building upon the agentic, reasoning, and coding (ARC) capabilities of its predecessor, GLM-5 adopts DSA to significantly reduce training and inference costs while maintaining long-context fidelity. To advance model alignment and autonomy, we implement a new asynchronous reinforcement learning infrastructure that drastically improves post-training efficiency by decoupli...
State-of-the-art Vision-Language-Action (VLA) models excel at semantic generalization but struggle to generalize to unseen physical motions in novel environments. We introduce DreamZero, a World Action Model (WAM) built upon a pretrained video diffusion backbone. Unlike VLAs, WAMs learn physical dynamics by predicting future world states and actions, using video as a dense representation of how the world evolves. By jointly modeling video and action, DreamZero learns diverse skills effectively f...
Mixture-of-Experts (MoE) effectively scales model capacity while preserving computational efficiency through sparse expert activation. However, training high-quality MoEs from scratch is prohibitively expensive. A promising alternative is to convert pretrained dense models into sparse MoEs. Existing dense-to-MoE methods fall into two categories: \textbf{dynamic structural pruning} that converts dense models into MoE architectures with moderate sparsity to balance performance and inference effici...
*Notable papers are those with at least two authors from a "big" AI/ML lab.