Last updated just now...
Causality -- referring to temporal, uni-directional cause-effect relationships between components -- underlies many complex generative processes, including videos, language, and robot trajectories. Current causal diffusion models entangle temporal reasoning with iterative denoising, applying causal attention across all layers, at every denoising step, and over the entire context. In this paper, we show that the causal reasoning in these models is separable from the multi-step denoising process. ...
Human problem-solving is never the repetition of a single mindset, by which we mean a distinct mode of cognitive processing. When tackling a specific task, we do not rely on a single mindset; instead, we integrate multiple mindsets within the single solution process. However, existing LLM reasoning methods fall into a common trap: they apply the same fixed mindset across all steps, overlooking that different stages of solving the same problem require fundamentally different mindsets. This single...
Deriving predictable scaling laws that govern the relationship between model performance and computational investment is crucial for designing and allocating resources in massive-scale recommendation systems. While such laws are established for large language models, they remain challenging for recommendation systems, especially those processing both user history and context features. We identify poor scaling efficiency as the main barrier to predictable power-law scaling, stemming from ineffici...
Influence functions are commonly used to attribute model behavior to training documents. We explore the reverse: crafting training data that induces model behavior. Our framework, Infusion, uses scalable influence-function approximations to compute small perturbations to training documents that induce targeted changes in model behavior through parameter shifts. We evaluate Infusion on data poisoning tasks across vision and language domains. On CIFAR-10, we show that making subtle edits via Infus...
Autonomous GUI agents interact with environments by perceiving interfaces and executing actions. As a virtual sandbox, the GUI World model empowers agents with human-like foresight by enabling action-conditioned prediction. However, existing text- and pixel-based approaches struggle to simultaneously achieve high visual fidelity and fine-grained structural controllability. To this end, we propose Code2World, a vision-language coder that simulates the next visual state via renderable code generat...
Although large language models (LLMs) demonstrate expert-level medical knowledge, aligning their open-ended outputs with fine-grained clinician preferences remains challenging. Existing methods often rely on coarse objectives or unreliable automated judges that are weakly grounded in professional guidelines. We propose a two-stage framework to address this gap. First, we introduce HealthRubrics, a dataset of 7,034 physician-verified preference examples in which clinicians refine LLM-drafted rubr...
The scarcity of high-quality data remains a primary bottleneck in adapting multimodal generative models for medical image editing. Existing medical image editing datasets often suffer from limited diversity, neglect of medical image understanding and inability to balance quality with scalability. To address these gaps, we propose MieDB-100k, a large-scale, high-quality and diverse dataset for text-guided medical image editing. It categorizes editing tasks into perspectives of Perception, Modific...
The purpose of predictive modeling on relational data is to predict future or missing values in a relational database, for example, future purchases of a user, risk of readmission of the patient, or the likelihood that a financial transaction is fraudulent. Typically powered by machine learning methods, predictive models are used in recommendations, financial fraud detection, supply chain optimization, and other systems, providing billions of predictions every day. However, training a machine le...
We introduce AutoSpec, a neural network framework for discovering iterative spectral algorithms for large-scale numerical linear algebra and numerical optimization. Our self-supervised models adapt to input operators using coarse spectral information (e.g., eigenvalue estimates and residual norms), and they predict recurrence coefficients for computing or applying a matrix polynomial tailored to a downstream task. The effectiveness of AutoSpec relies on three ingredients: an architecture whose i...
Although large language models (LLMs) have demonstrated impressive coding capabilities, their ability to autonomously build production-scale software from explicit specifications remains an open question. We introduce SWE-AGI, an open-source benchmark for evaluating end-to-end, specification-driven construction of software systems written in MoonBit. SWE-AGI tasks require LLM-based agents to implement parsers, interpreters, binary decoders, and SAT solvers strictly from authoritative standards a...
The transition from symbolic manipulation to science-grade reasoning represents a pivotal frontier for Large Language Models (LLMs), with physics serving as the critical test anchor for binding abstract logic to physical reality. Physics demands that a model maintain physical consistency with the laws governing the universe, a task that fundamentally requires multimodal perception to ground abstract logic in reality. At the Olympiad level, diagrams are often constitutive rather than illustrative...
With the growing interest in foundation models for brain signals, graph-based pretraining has emerged as a promising paradigm for learning transferable representations from connectome data. However, existing contrastive and masked autoencoder methods typically rely on naive random dropping or masking for augmentation, which is ill-suited for brain graphs and hypergraphs as it disrupts semantically meaningful connectivity patterns. Moreover, commonly used graph-level readout and reconstruction sc...
LLM-as-a-Judge has been widely adopted across various research and practical applications, yet the robustness and reliability of its evaluation remain a critical issue. A core challenge it faces is bias, which has primarily been studied in terms of known biases and their impact on evaluation outcomes, while automated and systematic exploration of potential unknown biases is still lacking. Nevertheless, such exploration is crucial for enhancing the robustness and reliability of evaluations. To br...
Multi-agent systems (MAS) can substantially extend the reasoning capacity of large language models (LLMs), yet most frameworks still aggregate agent outputs with majority voting. This heuristic discards the evidential structure of reasoning traces and is brittle under the confabulation consensus, where agents share correlated biases and converge on the same incorrect rationale. We introduce AgentAuditor, which replaces voting with a path search over a Reasoning Tree that explicitly represents ag...
Chain-of-thought (CoT) reasoning and its variants have substantially improved the performance of language models on complex reasoning tasks, yet the precise mechanisms by which different strategies facilitate generalization remain poorly understood. While current explanations often point to increased test-time computation or structural guidance, establishing a consistent, quantifiable link between these factors and generalization remains challenging. In this work, we identify intrinsic dimension...
Existing work has linked properties of a function's gradient to the difficulty of function approximation. Motivated by these insights, we study how gradient information can be leveraged to improve neural network's ability to approximate high-frequency functions, and we propose a gradient-based residual connection as a complement to the standard identity skip connection used in residual networks. We provide simple theoretical intuition for why gradient information can help distinguish inputs and ...
The development of artificial intelligence can be viewed as an evolution of data-driven learning paradigms, with successive shifts in data organization and utilization continuously driving advances in model capability. Current LLM research is dominated by a paradigm that relies heavily on unidirectional scaling of data size, increasingly encountering bottlenecks in data availability, acquisition cost, and training efficiency. In this work, we argue that the development of AGI is entering a new p...
Large Language Models (LLMs) have shown promise in solving complex mathematical problems, yet they still fall short of producing accurate and consistent solutions. Reinforcement Learning (RL) is a framework for aligning these models with task-specific rewards, improving overall quality and reliability. Group Relative Policy Optimization (GRPO) is an efficient, value-function-free alternative to Proximal Policy Optimization (PPO) that leverages group-relative reward normalization. We introduce It...
GUI agents have emerged as a powerful paradigm for automating interactions in digital environments, yet achieving both broad generality and consistently strong task performance remains challenging.In this report, we present UI-Venus-1.5, a unified, end-to-end GUI Agent designed for robust real-world applications.The proposed model family comprises two dense variants (2B and 8B) and one mixture-of-experts variant (30B-A3B) to meet various downstream application scenarios.Compared to our previous ...
We introduce InternAgent-1.5, a unified system designed for end-to-end scientific discovery across computational and empirical domains. The system is built on a structured architecture composed of three coordinated subsystems for generation, verification, and evolution. These subsystems are supported by foundational capabilities for deep research, solution optimization, and long horizon memory. The architecture allows InternAgent-1.5 to operate continuously across extended discovery cycles while...
Large Multimodal Models (LMMs) have achieved remarkable success in vision-language tasks, yet their vast parameter counts are often underutilized during both training and inference. In this work, we embrace the idea of looping back to move forward: reusing model parameters through recursive refinement to extract stronger multimodal representations without increasing model size. We propose RecursiveVLM, a recursive Transformer architecture tailored for LMMs. Two key innovations enable effective l...
Recent works have indicated redundancy across transformer blocks, prompting the research of depth compression to prune less crucial blocks. However, current ways of entire-block pruning suffer from risks of discarding meaningful cues learned in those blocks, leading to substantial performance degradation. As another line of model compression, channel pruning can better preserve performance, while it cannot reduce model depth and is challenged by inconsistent pruning ratios for individual layers....
Reward models (RMs) are crucial for the training of large language models (LLMs), yet they typically rely on large-scale human-annotated preference pairs. With the widespread deployment of LLMs, in-the-wild interactions have emerged as a rich source of implicit reward signals. This raises the question: Can we develop reward models directly from in-the-wild interactions? In this work, we explore this possibility by adopting WildChat as an interaction source and proposing a pipeline to extract rel...
Feature Engineering (FE) is pivotal in automated machine learning (AutoML) but remains a bottleneck for traditional methods, which treat it as a black-box search, operating within rigid, predefined search spaces and lacking domain awareness. While Large Language Models (LLMs) offer a promising alternative by leveraging semantic reasoning to generate unbounded operators, existing methods fail to construct free-form FE pipelines, remaining confined to isolated subtasks such as feature generation. ...
With the rapid advancement of IoT and edge computing, sensor networks have become indispensable, driving the need for large-scale sensor deployment. However, the high deployment cost hinders their scalability. To tackle the issues, Spatial Interpolation (SI) introduces virtual sensors to infer readings from observed sensors, leveraging graph structure. However, current graph-based SI methods rely on pre-trained models, lack adaptation to larger and unseen graphs at test-time, and overlook test d...
Scaling up model parameters has long been a prevalent training paradigm driven by the assumption that larger models yield superior generation capabilities. However, under lossy context compression in a compressor-decoder setup, we observe a Size-Fidelity Paradox: increasing the compressor size can lessen the faithfulness of reconstructed contexts though training loss decreases. Through extensive experiments across models from 0.6B to 90B, we coin this paradox arising from two dominant factors: 1...
Sharpness-aware minimization (SAM) seeks the minima with a flat loss landscape to improve the generalization performance in machine learning tasks, including fine-tuning. However, its extra parameter perturbation step doubles the computation cost, which becomes the bottleneck of SAM in the practical implementation. In this work, we propose an approach SL-SAM to break this bottleneck by introducing the sparse technique to layers. Our key innovation is to frame the dynamic selection of layers for ...
The prevalent paradigm in robot learning attempts to generalize across environments, embodiments, and tasks with language prompts at runtime. A fundamental tension limits this approach: language is often too abstract to guide the concrete physical understanding required for robust manipulation. In this work, we introduce Contact-Anchored Policies (CAP), which replace language conditioning with points of physical contact in space. Simultaneously, we structure CAP as a library of modular utility m...
We investigate what structure emerges in 3D Gaussian Splatting (3DGS) solutions from standard multi-view optimization. We term these Rendering-Optimal References (RORs) and analyze their statistical properties, revealing stable patterns: mixture-structured scales and bimodal radiance across diverse scenes. To understand what determines these parameters, we apply learnability probes by training predictors to reconstruct RORs from point clouds without rendering supervision. Our analysis uncovers f...
*Notable papers are those with at least two authors from a "big" AI/ML lab.