Last updated just now...
Many generative tasks in chemistry and science involve distributions invariant to group symmetries (e.g., permutation and rotation). A common strategy enforces invariance and equivariance through architectural constraints such as equivariant denoisers and invariant priors. In this paper, we challenge this tradition through the alternative canonicalization perspective: first map each sample to an orbit representative with a canonical pose or order, train an unconstrained (non-equivariant) diffusi...
Automatically generating interactive 3D environments is crucial for scaling up robotic data collection in simulation. While prior work has primarily focused on 3D asset placement, it often overlooks the physical relationships between objects (e.g., contact, support, balance, and containment), which are essential for creating complex and realistic manipulation scenarios such as tabletop arrangements, shelf organization, or box packing. Compared to classical 3D layout generation, producing complex...
Reinforcement learning with verifiable rewards (RLVR) has been a main driver of recent breakthroughs in large reasoning models. Yet it remains a mystery how rewards based solely on final outcomes can help overcome the long-horizon barrier to extended reasoning. To understand this, we develop a theory of the training dynamics of RL for transformers on compositional reasoning tasks. Our theory characterizes how the effectiveness of RLVR is governed by the smoothness of the difficulty spectrum. Whe...
Transferring visual style between images while preserving semantic correspondence between similar objects remains a central challenge in computer vision. While existing methods have made great strides, most of them operate at global level but overlook region-wise and even pixel-wise semantic correspondence. To address this, we propose CoCoDiff, a novel training-free and low-cost style transfer framework that leverages pretrained latent diffusion models to achieve fine-grained, semantically consi...
To understand and identify the unprecedented risks posed by rapidly advancing artificial intelligence (AI) models, Frontier AI Risk Management Framework in Practice presents a comprehensive assessment of their frontier risks. As Large Language Models (LLMs) general capabilities rapidly evolve and the proliferation of agentic AI, this version of the risk analysis technical report presents an updated and granular assessment of five critical dimensions: cyber offense, persuasion and manipulation, s...
Reasoning in Large Language Models (LLMs) often suffers from inefficient long chain-of-thought traces with redundant self-exploration and validation, which inflate computational costs and even degrade performance. Inspired by human reasoning patterns where people solve new problems by leveraging past related cases to constrain search spaces and reduce trial-and-error, we propose Precedent Informed Reasoning (PIR) transforming LRMs'reasoning paradigm from exhaustive self-exploration to guided lea...
Vision-Language Navigation VLN requires large-scale trajectory instruction data from private indoor environments, raising significant privacy concerns. Federated Learning FL mitigates this by keeping data on-device, but vanilla FL struggles under VLNs' extreme cross-client heterogeneity in environments and instruction styles, making a single global model suboptimal. This paper proposes pFedNavi, a structure-aware and dynamically adaptive personalized federated learning framework tailored for VLN...
The rapid evolution of Large Language Models has catalyzed a surge in scientific idea production, yet this leap has not been accompanied by a matching advance in idea evaluation. The fundamental nature of scientific evaluation needs knowledgeable grounding, collective deliberation, and multi-criteria decision-making. However, existing idea evaluation methods often suffer from narrow knowledge horizons, flattened evaluation dimensions, and the inherent bias in LLM-as-a-Judge. To address these, we...
The performance of autonomous Web GUI agents heavily relies on the quality and quantity of their training data. However, a fundamental bottleneck persists: collecting interaction trajectories from real-world websites is expensive and difficult to verify. The underlying state transitions are hidden, leading to reliance on inconsistent and costly external verifiers to evaluate step-level correctness. To address this, we propose AutoWebWorld, a novel framework for synthesizing controllable and veri...
Optimizing CUDA code across multiple generations of GPU architectures is challenging, as achieving peak performance requires an extensive exploration of an increasingly complex, hardware-specific optimization space. Traditional compilers are constrained by fixed heuristics, whereas finetuning Large Language Models (LLMs) can be expensive. However, agentic workflows for CUDA code optimization have limited ability to aggregate knowledge from prior exploration, leading to biased sampling and subopt...
Multimodal reasoning for ultra-high-resolution (UHR) remote sensing (RS) is usually bottlenecked by visual evidence acquisition: the model necessitates localizing tiny task-relevant regions in massive pixel spaces. While Agentic Reinforcement Learning with Verifiable Rewards (RLVR) using zoom-in tools offers a path forward, we find that standard reinforcement learning struggles to navigate these vast visual spaces without structured domain priors. In this paper, we investigate the interplay betw...
Agent skills are becoming a core abstraction in coding agents, packaging long-form instructions and auxiliary scripts to extend tool-augmented behaviors. This abstraction introduces an under-measured attack surface: skill-based prompt injection, where poisoned skills can steer agents away from user intent and safety policies. In practice, naive injections often fail because the malicious intent is too explicit or drifts too far from the original skill, leading agents to ignore or refuse them; ex...
Unified Multimodal Large Language Models (MLLMs) require a visual representation that simultaneously supports high-fidelity reconstruction, complex semantic extraction, and generative suitability. However, existing visual tokenizers typically struggle to satisfy these conflicting objectives within a single framework. In this paper, we introduce UniWeTok, a unified discrete tokenizer designed to bridge this gap using a massive binary codebook ($\mathit{2^{128}}$). For training framework, we intro...
Effective exploration is a key challenge in reinforcement learning for large language models: discovering high-quality trajectories within a limited sampling budget from the vast natural language sequence space. Existing methods face notable limitations: GRPO samples exclusively from the root, saturating high-probability trajectories while leaving deep, error-prone states under-explored. Tree-based methods blindly disperse budgets across trivial or unrecoverable states, causing sampling dilution...
Multimodal Large Language Models (MLLMs) have demonstrated exceptional capabilities in high-level visual understanding. However, extending these models to fine-grained dense prediction tasks, such as semantic segmentation and depth estimation, typically necessitates the incorporation of complex, task-specific decoders and other customizations. This architectural fragmentation increases model complexity and deviates from the generalist design of MLLMs, ultimately limiting their practicality. In t...
Post-training GUI agents in interactive environments is critical for developing generalization and long-horizon planning capabilities. However, training on real-world applications is hindered by high latency, poor reproducibility, and unverifiable rewards relying on noisy visual proxies. To address the limitations, we present GUI-GENESIS, the first framework to automatically synthesize efficient GUI training environments with verifiable rewards. GUI-GENESIS reconstructs real-world applications i...
Large Language Models (LLMs) have empowered autonomous agents to handle complex web navigation tasks. While recent studies integrate tree search to enhance long-horizon reasoning, applying these algorithms in web navigation faces two critical challenges: sparse valid paths that lead to inefficient exploration, and a noisy context that dilutes accurate state perception. To address this, we introduce Plan-MCTS, a framework that reformulates web navigation by shifting exploration to a semantic Plan...
We present BitDance, a scalable autoregressive (AR) image generator that predicts binary visual tokens instead of codebook indices. With high-entropy binary latents, BitDance lets each token represent up to $2^{256}$ states, yielding a compact yet highly expressive discrete representation. Sampling from such a huge token space is difficult with standard classification. To resolve this, BitDance uses a binary diffusion head: instead of predicting an index with softmax, it employs continuous-space...
Pathology foundation models (PFMs) have enabled robust generalization in computational pathology through large-scale datasets and expansive architectures, but their substantial computational cost, particularly for gigapixel whole slide images, limits clinical accessibility and scalability. Here, we present LitePath, a deployment-friendly foundational framework designed to mitigate model over-parameterization and patch level redundancy. LitePath integrates LiteFM, a compact model distilled from t...
We present Eureka-Audio, a compact yet high-performance audio language model that achieves competitive performance against models that are 4 to 18 times larger across a broad range of audio understanding benchmarks. Despite containing only 1.7B parameters, Eureka-Audio demonstrates strong performance on automatic speech recognition (ASR), audio understanding, and dense audio captioning, matching or surpassing multiple 7B to 30B audio and omni-modal baselines. The model adopts a unified end-to-en...
Learning expressive and efficient policy functions is a promising direction in reinforcement learning (RL). While flow-based policies have recently proven effective in modeling complex action distributions with a fast deterministic sampling process, they still face a trade-off between expressiveness and computational burden, which is typically controlled by the number of flow steps. In this work, we propose mean velocity policy (MVP), a new generative policy function that models the mean velocit...
Many robot tasks require attending to the history of past observations. For example, finding an item in a room requires remembering which places have already been searched. However, the best-performing robot policies typically condition only on the current observation, limiting their applicability to such tasks. Naively conditioning on past observations often fails due to spurious correlations: policies latch onto incidental features of training histories that do not generalize to out-of-distrib...
Revealing the underlying causal mechanisms in the real world is crucial for scientific and technological progress. Despite notable advances in recent decades, the lack of high-quality data and the reliance of traditional causal discovery algorithms (TCDA) on the assumption of no latent confounders, as well as their tendency to overlook the precise semantics of latent variables, have long been major obstacles to the broader application of causal discovery. To address this issue, we propose a nove...
Reinforcement learning with verifiable rewards (RLVR) has become a trending paradigm for training reasoning large language models (LLMs). However, due to the autoregressive decoding nature of LLMs, the rollout process becomes the efficiency bottleneck of RL training, consisting of up to 70\% of the total training time. In this work, we propose Quantized Reinforcement Learning (QuRL) that uses a quantized actor for accelerating the rollout. We address two challenges in QuRL. First, we propose Ada...
*Notable papers are those with at least two authors from a "big" AI/ML lab.